
T. R. WELBERRY, G. H. MILLER AND C. E. CARROLL 929 

be neglected and the familiar formula for short- 
range-order diffuse scattering (see e.g. Guinier, 1963, p. 
269) is obtained. For values of a much greater than this 
many such diffuse curves corresponding to higher 
values of P must be included in the summation. Each of 
these will represent successively broader more diffuse 
peaks as r 2p approaches zero. The factor (k 2 t72)P/P! 
eventually goes to zero as P increases for any tr but for 
values of a ~_ 1 many terms must be included. 
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Abstract 1. Introduction 

Expressions for the probability P(Ro) that a reflexion of 
'true' intensity R will have an observed value R o 
(possibly negative) are obtained for four counting 
modes: fixed-time counting, equal and unequal times 
for total and background; fixed-count timing, equal and 
unequal counts for total and background. The distribu- 
tions have a positive excess and are in general skew, 
though the skewness may be zero for particular choices 
of unequal times (counts). Deviations from the normal 
distribution with the same mean and variance may be 
considerable for IRol ~_ 0 and for IRol large, and may 
possibly be significant in some applications even for 
R o ~_ R. This apparent conflict with the central limit 
theorem is reconciled. 

0567-7394/80/060929-08501.00 

In both single-crystal and powder diffractometry the 
integrated intensity of a reflexion is obtained as the 
difference between a counting rate averaged over a 
region of reciprocal space intended to include the 
reflected intensity, and a counting rate averaged over a 
neighbouring volume of reciprocal space intended to 
include only background. If the intentions are not 
effectively realized there will be a systematic error in 
the measured intensity, but the present concern is not 
with such systematic errors but with statistical fluctua- 
tions in the intensity as observed. Although an intensity 
can never be really negative, it is not uncommon for the 
measured background counting rate to be higher than 
the measured reflexion-plus-background rate, giving an 

© 1980 International Union of Crystallography 
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observed-as-negative reflexion. The probability of an 
observed-as-negative intensity will depend on the 
counting mode in which the diffractometer is operated. 

The two basic modes (Parrish, 1956) are fixed-time 
counting and fixed-count timing. In the first, each 
measurement is made in a pre-determined time interval, 
and the standard deviation of the observed counting 
rate is proportional to the square root of the true 
(mean) counting rate. In fixed-count timing the count- 
ing is continued until a pre-determined number of 
counts is reached, and the standard deviation of the 
observed counting rate is proportional to the true 
counting rate. In other words, the relative error in 
intensities goes down inversely as the square root of the 
intensity for fixed-time counting, whereas the relative 
error is independent of the counting rate in fixed-count 
timing. Each method has advantages, depending on the 
purpose of the measurements, and numerous modifi- 
cations and compromises have been used in practice or 
proposed with the object of increasing the efficiency of 
the use of the available time. Among these are: 

(i) The Cooke-Yarborough (1951) method. Fixed- 
count timing suffers from the disadvantage that the 
diffractometer spends most of its time accumulating 
background counts at a low rate, and much less on the 
reflexion. This is avoided if artificial counts are fed into 
the counting circuits at a known uniform rate. The 
diffractometer mode thus approximates to fixed-count 
timing while on a reflexion where the counting rate is 
already high, and to fixed-time counting while on the 
background where the counting rate is low. This 
method has advantages in some applications of powder 
diffractometry, but I have not come across any 
mention of its use in single-crystal diffractometry. 

(ii) Multiple fixed-time counting. The diffractometer 
control circuits are arranged so that counts are 
accumulated for a predetermined unit of time. If the 
number is great enough to give a satisfactorily low 
expected standard deviation the diffractometer moves 
on to the next measurement. If the number is not great 
enough the measurement is repeated for a further time 
unit, and the pooled number of counts tested, the 
process being repeated until ei ther  a satisfactory 
standard deviation is achieved, or a predetermined 
number (say five to twenty) of time units has been used. 
Like the Cooke-Yarborough method, this approxi- 
mates to fixed-count timing where counting rates are 
high, and to fixed-time counting where they are low. It 
is described in detail by Mackie (1972) and briefly by 
Sudarsanan & Young (1974). 

(iii) Optimization of counting times. Procedures for 
optimizing counting times for the achievement of 
different purposes have been proposed by many 
authors, but it seems that they have usually been 
proposals never realized routinely. The following are 
some typical papers, in order of date: Mack & 
Spielberg (1958), Zevin, Umanskij, Khejker & 

Pan6enko (1961), Wilson, Thomsen & Yap (1965), 
Killean (1967), Wilson (1967), Shoemaker (1968), 
Thomsen & Yap (1968a,b), Shoemaker & Hamilton 
(1972), Mackenzie & Williams (1973), Killean (1973), 
Grant (1973) and Szabo (1978). 

The determination of the probability distribution of 
the measured intensity of a reflexion is of intrinsic 
intellectual interest. There are, however, three possible 
applications of practical interest in structure determina- 
tion. First, French & Wilson (1978) have proposed a 
Bayesian method of estimating a more likely positive 
value for the intensity of a reflexion actually measured 
as negative. The method requires a knowledge of the 
probability distribution of measured-as-negative inten- 
sities. Their assumption that the distribution is the tail 
of a normal distribution is not entirely accurate; 
substitution of a more accurate distribution would not 
affect the principle of the method, though it would alter 
the actual values obtained. French (1978) and one of 
the referees of this paper estimated the bias that would 
result from using the normal approximation rather than 
the 'true' distributions in the French & Wilson (1978) 
procedure; the estimates range from 1 to 10% in the 
likely range of application. Although this amount is not 
large, it is a systematic bias rather than a random error, 
and would thus bias estimates of crystallographic 
parameters (Wilson, 1973, 1976, 1979). Outside the 
likely range of this application the relative error 
becomes larger, and may be of importance in other 
applications. 

Secondly, Price (1979) has proposed a maximum- 
likelihood method of estimating structural parameters, 
as an improvement on the usual procedures. This 
method requires a knowledge of the probability 
distribution of the measured intensities; maximum- 
likelihood and least-squares estimates coincide only if 
the intensity distribution is normal with known 
variance. The exact distribution near the peak is thus of 
interest for the Price procedure; Price actually assumed 
a Poisson distribution, which in some senses differs 
from the normal more than the 'true' distribution does 
(Table 1). All the 'true' distributions considered here 
have a positive excess (kurtosis), as does the Poisson; 
this implies that they are slimmer near the peak and 
have more pronounced tails than the normal distri- 
bution (Cram6r, 1945, p. 184). To be more specific, if a 
distribution differed from the normal only through 
having a finite positive excess, it would lie above the 
normal in the range +0.742 standard deviations, below 
it in the ranges +(0.742, 2.332), and above it again in 
the ranges +(2.332, oo). The distributions to be 
considered are in general skew, though the skewness 
may vanish for particular values of the ratio of 
counting times or of timing counts (Table 1). 

The third way in which a knowledge of the 
probability distribution of measured intensities could be 
of practical use is in the indication of structural 
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imperfection or systematic error. Certain types of 
structural imperfection give a displacement as well as a 
broadening of the reflexions, the displacement varying 
systematically with hkl. If this is not recognized, 
routine diffractometer measurements would find back- 
ground at the position of the undisplaced reflexion and 
reflexion or part of a reflexion at the 'background' 
setting, giving a measured-as-negative reflexion cor- 
responding to a physical reality. There is also the 
possibility that a rapidly varying thermal or other 
diffuse background may be higher at the background 
setting than at the reflexion setting, giving a measured- 
as-negative reflexion instead of a weak positive reflex- 
ion. Finally, there is the possibility that at extreme 
settings more stray radiation may reach the detector 
when on background than when on a reflexion, though 
this is not likely to happen systematically. If the 
proportion of measured-as-negative reflexions is greatly 
in excess of that to be expected from the relevant 
probability distribution, a photographic check on 
displacement of reflexions or abnormal background 
may be worth while. 

It may avoid confusion to point out that intensities 
have two distinct probability distributions: the a priori 
probability that an arbitrarily chosen reflexion of a 
particular substance will have a particular 'true' 
intensity (R in the notation of the present paper) 
(Wilson, 1949), and the probability that a 'true' R will 
have an observed value R o. It is the second type of 
probability distribution that is now under discussion, 
but both are needed for the French & Wilson (1978) 
procedure. The complexity of the mathematics 
increases rapidly with the complexity of the counting 
mode, and only four possibilities are considered here: 

(i) fixed-time counting with equal background and 
total times; 

(ii) fixed-time counting with different background 
and total times; 

(iii) fixed-count timing with equal background and 
total counts; and 

(iv) fixed-count timing with different background 
and total counts. 

Results in terms of familiar functions are obtained only 
for the first of these (§2). The second requires a 
recognized but not familiar function (§3); for the third 
and fourth only a series valid for small values of R o is 
obtained (§4). This is, however, sufficient for a 
discussion of the applicability of the normal approxi- 
mation in the French & Wilson (1978) procedure. 
Often the probability of small positive or small 
measured-as-negative reflexions is less than that predic- 
ted by the normal approximation. The relative discre- 
pancies can be large for IRoL near zero and for IRot 
large, so a reconciliation with the central limit theorem 
(asymptotic approach to normality of probability 
distributions satisfying certain requirements) is at- 
tempted in §5. 

2. Fixed-time counting 

In the absence of drift and other disturbing influences 
(such as the use of unrectified or unsmoothed high- 
tension supplies for the X-ray tube), the number of 
photons recorded during the predetermined time 
interval used in diffractometers working in the fixed- 
time mode will fluctuate in accordance with the Poisson 
probability distribution. If the 'true' number of counts 
to be expected in the interval is N, the probability that 
the observed number will be N o is given by 

p( N o) = exp ( -N)NN° /  No!, ( 1 ) 

Table 1. Some  parameters  o f  the intensity distributions 

D i s t r i b u t i o n  M e a n  V a r i a n c e  S k e w n e s s  Excess  

P or2 )'~ Y2 

Po i s son  T T T ~/z T -  

N o r m a l  p o 2 0 0 

F i x e d - t i m e  
T - - B  1 

equal  T -  B T + B 
( T  + B) 3/2 T + .,r3 

T -  k 3 B  T +  k 4 B  
unequa l  T -  k B  T + k2 B 

F i x e d - c o u n t  

equa l  

unequa l  

( T  + k 2 B )  v2 ( T  + k 2 B )  z 

T - B  
T 2 + B z 4 (m - 2)v2 (T-~ - B 3) 6(5rn - 11 ) (T  2 - B z) 

m --  2 (m - 3 ) ( T  2 + B2) 3/2 (m - 3 ) (m - 4 ) ( T  z + B z) 

T 2 B z 
T - B  - - + - -  C o m p l i c a t e d  

m ~ - 2  m 2 - 2  
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where all quantities appearing are necessarily non- 
negative. If the 'true' number of counts to be expected 
when the diffractometer is set to receive a reflexion is T, 
and the 'true' number when it is set to receive the 
immediate background is B, the 'true' intensity of the 
reflexion is 

R = T -  B, (2) 

provided that the time interval used for reflexion is 
equal to the time interval used for background. In 
practice, the 'observed' values T o and B o fluctuate with 
probabilities given by (1) with T or B replacing N, so 
that the observed value, 

R o = T o - - B  o, (3) 

will also fluctuate, though not with the same proba- 
bility distribution, and can, at times, be observed as 
negative. The probability of obtaining any particular 
value o f R  o is given by 

P(Ro)  = Z e x p / - ( B  + T)}Bn°Tr°/Bo!To !, (4) 

the summation being over all values of T o and B o 
satisfying (3). It has already been shown [Wilson 
(1978), using results of Skellam (1946)] that this 
summation gives 

P ( R o ) = e x p { - - ( B  + T)}(T/B)R°/2I,Ro,{2(BT)~/2}, (5) 

where I ,  is the hyperbolic Bessel function of the first 
kind. The expression is valid for both positive and 
negative values of R o. Obviously 

p ( + l R o l ) / p ( - I R o l  ) = ( T / B )  ~R,/, (6) 

a remarkably simple relationship. Equation (6) sug- 
gests that the maximum o fp (Ro)  near R o = R will have 
a miniature counterpart, diminished by the factor 
( T / B )  ~R,,~ near R o = - -R,  but in fact the probability 
falls off so rapidly for negative values of R o that no 
miniature peak is achieved. 

In view of the possible applications mentioned in the 
Introduct ion it is of interest to compare the distri- 
bution (5) with the normal approximation frequently 
assumed. This is 

p ( R  o) = (2ztS) -'/z exp{-(R o - R ) z / 2 S } ,  (7) 

where S is given by 

S = B + T (8) 

and R has the same meaning as before. The com- 
parison is most easily made by expressing the Bessel 
function as a series asymptotic in (Ro z + 4BT)1/2: 

P(Ro)  ~_ {47r2(RZo + 4 B T ) }  -'/4 exp( -S)  

x {2 (BT) ' / z / [ IRo  I + (R2o + 4BT) ' / z ] }  'Ro' 

x (T/B)Ro/2exp{(R2 o + 4 B T )  1/2} + . . .  (9) 

(Abramowitz & Stegun, 1964, formula 9.7.7). For any 
reasonable number of counts the terms not written 
down are quite negligible. There are four comparisons 
to be made. For R o large and positive (9) becomes, on 
neglecting 4 B T  in comparison with Ro 2, 

P(Ro)~_ (2ZrRo)-'/2(T/Ro)ROexp(Ro - S), (10) 

whereas the normal approximation becomes 

P(Ro)  ~ (2zrS) -'/z exp(--R~/2S). (11) 

Obviously the normal approximation approaches zero 
much more quickly than the true probability does. At 
the peak of the normal approximation R o = R, and 
after considerable cancellation (9) gives 

p ( R )  = (2rcS) -1/2, (12) 

which is exactly the same as for (7). In other words, the 
ordinates of the normal approximation and the asymp- 
totic expression for the true probability agree exactly at 
the peak of the normal approximation. For R o near 
zero, the region of interest for the French & Wilson 
(1978) procedure, (9) becomes 

P(Ro)  ~_ (167r2BT)-I/4(T/B) R'/2 exp { 2 ( B / T )  1 /2-  S},  

(13) 
which is, in fact, the first term of the usual asymptotic 
expansion of (5) (Whittaker & Watson, 1935, p. 373; 
Abramowitz & Stegun, 1964, formula 9.7.1), valid for 
large values of the variable lin this case 2 ( B T )  1/2] but 
not for large values of the order (in this case IRol). 
Equation (9) is remarkable for its wide range of 
applicability for both variable and order. The normal 
approximation is, of course, 

P(Ro) =- (2zrS) -~/2 e x p ( - g 2 / 2 S ) { 1  + R R o / S  + . . . } ,  (14) 

and the relation and the relative magnitudes of (13) and 
(14) are by no means obvious. However, for assessing 
the adequacy of the normal approximation for use in 
the French & Wilson (1978) procedure it will suffice to 
take the ratio of the probabilities at Ro = 0 and, in 
order to reduce the multiplicity of symbols, to introduce 
the total-to-background ratio, say q, so that 

T = qB, 

S = ( q  + I)B, (15) 

R = (q -- l)B. 

Obviously (in the absence of experimental blunders) 

One then has 

p(0) (Bessel) 

q_> 1. (16) 

- - [  (q+l)2]'/'4q J 
p(0) (normal) 

x exp{ [--1 -- 
( q - - 1 ) 2 ]  } 

q + 2 v / q  + - -  B . (17) 
2(q + 1) 



A. J. C. WILSON 933 

For q = 1 (reflexion of zero intensity), the ratio reduces 
to unity, in agreement with the identity of (7) and (12), 
but for increasing q the ratio decreases, particularly if 
the background is large. The true probability of small 
positive or negative reflexions is thus less than that 
suggested by the normal approximation. For large 
negative reflexions [IRol a few times ( B T )  1/2] (9) 
reduces to 

p ( - I R o l  ) ~_ (2~IRo l ) -~ /2 (B / IRo l )  tRo' exp (IRol -- S), 
(~8) 

and the normal approximation remains as in (11), so 
that the true probability is once more larger than that 
given by the normal distribution. Both probabilities are 
so small that this region is of little interest. 

3. Modified fixed-tlme counting 

The simplest modification of fixed-time counting is the 
use of different counting times for reflexion and 
background; for example the background may be 
measured on both sides of the reflexion, over the same 
time as was used for the reflexion, instead of half the 
time. The nett number of'reflexion' counts is then 

IB (19) R o = To -- ~ o, 

where B o is the total number of background counts, 
instead of the value given by (3). In general, therefore, 
the relation between total reflexion-plus-background 
counts T o, background-only counts B o, and reflexion- 
only counts R o will be 

R o = T O - kBo, (20) 

where k is the ratio of the counting times - usually, but 
not necessarily, an integer or a reciprocal integer. 
Obviously R o is not now necessarily an integer. 
Equation (4) becomes 

P(Ro)  = exp {--(B + T)} 
GO 

x ~ BS,,TR,,+ks,,/Bo!(Ro+ kBo)!. (21) 
Bo=O 

The sum on the right-hand side of (21) is no longer a 
hyperbolic Bessel function, but a generalization of it, 
apparently first studied by Wright (1933, 1935). In 
Wright's notation 

O(3 

~o(p,fl:z) = ~ z t / F ( l  + 1)F(pl + fl), (22a) 
I = 0  

but in more recent publications (for example, Olkha & 
Rathie, 1971) the relationship with Bessel functions is 
emphasized by notations like 

I~(x) = ~ (x /2)v+2r/r!F(1  + v + gr).  (22b) 
r = 0  

This reduces to the ordinary I,, for/t = 1, v = n. In this 
notation (21) becomes 

P(Ro) = exp {-(B + T)}(T2-k/B)R°/21~Ro, {2(BTk)U~}, 
(23) 

reducing to (5) for k = 1. Wright's function does not 
appear to have been tabulated. It is a special case of a 
much more general class of functions, for which there is 
an extensive literature (see, for example, Braaksma, 
1963), but nothing has been found in a wide but not 
exhaustive search that is of greater practical help than 
Wright's (1933) paper. This paper gives an expansion 
that is asymptotic in B and T, but not in R o. It is thus 
analogous to (13) rather than to (9), but it covers the 
region of interest for the French & Wilson (1978) 
procedure. In the present notation 

P(Ro)  ~ {27r(k + 1 ) ( k B T k )  l/(k + ') } - I / 2 (T /kB)  R'/(k+ l) 

× exp {[(k + 1 ) / k ] ( k B T k )  ' : ( k + ' ) -  S } ,  (24) 

which reduces to (13), as it should, for k =  1. On 
making the substitutions T = qkB ,  R = (q - 1)kB,  in a 
fashion analogous to (15), (24)becomes 

P(Ro) ~ { 27~k(k + 1)q k/(k+ 1) }-1/2 qRo/(k+ 1) 

× exp {[(k + 1)q k/(k+ll - qk  - l l B  }, (25) 

and the equivalent normal expression is 

p ( R o ) =  {2zr(q + k ) k B }  -1/2 

× exp { - - ( R o / B  - qk  + k )2B /2k (q  + k)}.(26) 

The ratio of expression (25) to the normal expression 
(26) for R o = 0 is 

p(0) (Wright) = ( k + q ],/2 

p(0) (normal) \ ~ ] q-k/2{k + ,) 

× e x p [ ] - l - k q + ( k + l ) q  ' / (k+l)+ 

it 

k ( q - - 1 ) 2 ] B l ,  

2(k + q ) ]  J 

(27) 

where the terms have been arranged to make com- 
parison with (17) easy. 

As already mentioned, (24) is valid only for small 
R, ;  the second term of Wright's series, omitted in (24), 
suggests that the condition is R2o ~ ( k B T k )  vtk+~). An 
expression valid for large R o can be obtained by the 
following argument. From formula 6.1.47 of Ab- 
ramowitz & Stegun (1964) 

z~-aF(z + a) /r (z  + b) 

_~ 1 + ( a - -  b) (a + b -  1)/2z + . . . .  (28) 

with a few restrictions on negative values of z. 
Applying this formula to (21) ( z = R  o, a = l ,  b =  
k B  o + 1) gives 

P(Ro)  ~_ [ e x p ( - S ) T R o / F ( R o  + 1)]~ [(BTk/Rko)So/Bot] 
Bo 

x {1 - k B o ( k B  o + 1) /2R o + .. .}.  (29) 
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The term in curly brackets can be expressed as 

{1 - k (k  + 1)Bo/2R o -  k 2 B o ( B o -  1)/2R o + . . . } ,  

so that with a little manipulation (29) becomes 

p(R, , )  ~ [TS, ' /F(Ro + 1)] exp(BTk/Rko - S )  

× { 1 - k ( k  + 1)(BTk/Rko)/2Ro 

- -  k2(BTk/Rko)2/2R o +. . .} .  (30) 

Equation (30) is a rather better approximation than 
(10) for large R o, even for k - 1; they become identical 
if F ( R  o + 1) is approximated by Stirling's formula and 
the terms in B T k / R ~  are neglected. The normal 
approximation (26) approaches zero with increasing R o 
more quickly than (30) does. 

For various reasons, in particular the conditions for 
the validity of (28), (30) cannot be applied for R o 
negative. If R o is negative, (21) starts with a lot of zero 
terms, since R o + kB  o (being equal to To) is integral 
even if R o is not, and the factorial of a negative integer 
is infinite. It is therefore more convenient to take T O , 
which may be written in this case 

T o = - - I R o l  + k B  o, (31) 

as the index of summation, giving ultimately 

p(--IR, , I )  ~_ [B'R,,'/k/F(IRoI/k + 1)1 

× e x p l ( k B T k / I R o l )  ~ / k - S ] { l  + . . . } ,  (32) 

where the first few terms in the curly brackets could be 
readily supplied if necessary. Like (30), (32) does not 
approach zero as rapidly as the normal approximation 
as IRol increases. 

4. Fixed-eount timing 

The probability of a time t being required to accumul- 
ate m counts when the true counting rate is 2 is given 
by the so-called gamma distribution 

p(t)dt  = 12(2t) m-~ e x p ( - 2 t ) / ( m -  1)!]dt. (33) 

The normalization is easily checked, since 

oo 

) x m exp (--x)dx = m!. (34) 
0 

It would naively be supposed that the average value of 
m / t  would be a good estimate of the counting rate 2, 
but it is in fact slightly biased, and the unbiased 
estimate of the counting rate is ( m -  1)/t, as is easily 
verified" 

( ( m  - 1)/t) = (m - 1))  t - '  p( t)dt  
0 

= ( m -  1)2(m--2) ! / (m--  1)! 

=2. (35) 

The variance of this estimate of the counting rate is 
similarly found to be 

a2I(m - 1)/t} = 2 2 / ( m -  2). (36) 

The differences introduced by the corrections - 1  or - 2  
are generally negligible, but would not be for counts as 
low as those proposed by Killean (1967). 

In order to make comparison with fixed-time 
counting as easy as possible, a parallel notation will be 
used: T is the true counting rate when the dif- 
fractometer is set on a reflexion; B is the true counting 
rate when the diffractometer is set to recieve back- 
ground; R is the difference T - - B ;  T O is the unbiased 
estimate of the counting rate when the diffractometer is 
set to receive a reflexion; B o is the similar estimate of 
the background counting rate; R o is the difference 
T o - B o ;  ml is the fixed number of counts used in 
estimating To; t~ is the experimentally determined time 
for accumulating m~ counts; m 2 and t 2 are the 
analogous quantities for the background. These 
definitions imply that 

T o =  (m I - 1)/t,, (37) 

B o =  (m 2 - 1)/t 2, (38) 

R o = ( m , -  1)/t I -- (m 2 -- 1)/t2, (39) 

a2(Ro) = T2 / (m ,  - 2) + B 2 / ( m 2 -  2). (40) 

The probability distribution (36) becomes 

p( t , )d t ,  = [T (T t , ) " ,  -1 e x p ( - T t , ) / ( m ,  - 1)t]dt, (41) 

for the counting time when the diffractometer is set on 
a reflexion, and 

p(t2)dt 2 = [B(Bt2) m2-' e x p ( - B t 2 ) / ( m  2 - 1)!]dt 2 (42) 

when it is set to collect background. It must be 
remembered that in this section T, B,  R,  etc. are 
counting rates, and not numbers  of counts, as in §3. 

It is not, in fact, difficult to write down the 
probability distributions of the counting rates T O and 
B o. For T o, for example, 

Id t l l  
P( To)d To = P( t , )l-d-~oo ld To, (43) 

where p(t~) is given by (41) and t I is to be replaced by 
its equivalent in terms of T O from (37). The result is 

P ( T o ) d T  o = 
[ T ( m  I - 1)~To ]m,+l 

( m , -  1)! 

{ ( m l - - 1 ) T }  dTo 
× exp 

T O ( m , -  1)T 
(44) 

There does not seem to be a generally recognized 
special name for the distribution (44). 

The probability distribution of R o is obtained by 
multiplying the distributions (41) and (42) together and 
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integrating over those values of t I and t2 that lead to 
values of R o lying between R o and R o + d R  o. For R o 
non-negative, from (39), 

so that 

P( R o)d R o = 

m~-- 1 
I l ---- , (45) 

R o + (m 2 -- 1)/t 2 

(m I - 1)dR o 
dt I = -  [Ro + (m2_ 1)/t2] 2 , (46) 

(m I -- 1) m, 

(m l -  1)!(m z -  1)! 

×f Ro + (m 2 -- 1)/t 2 

(m I - 1)T 

x exp Ro + ( m 2 _  l ) / t2  

x d ( B t 2 ) d ( R o / T  ). 

+1 

X ( B t 2 ) ' , - '  

-- Bt  2 } 

(47) 

The integral in (47) is not very tractable, perhaps 
because the distribution function for T o (44) and the 
corresponding distribution for B o do not possess 
moments of all orders; only the first m~ - 1 and m 2 - 1 
exist. The right-hand side of (47) can be expanded in 
powers of R o. With q defined by the analogue of the 
definition used in (25), 

the series is 

q =  ( m , -  1 ) T / ( m  2 -- 1)B, (48) 

P ( R o ) d R  o = 
q",+ l(m I + m2)! 

( m  I - -  1)!(m 2 -- 1)!(1 + q)m,+,n2+l 

x (ml- -  I)T 1 + (ml + m 2  + 1) 

q 
X ~ [ ( m  2+ 1)q-- (m 1+ 1)] 

(1 + q)2 

Ro 
X 

(m I - 1)T 

+ [(m I + m 2 + 2)(m I + m 2 + 1)/2!] 
q2 

x ~ [(m 2 + 2)(m 2 + 1)q 2 
( I  + q)4 

-- 2(m I + 2)(m 2 + 2)q 

+ (m, + 1)(m, + 2)1 

x (m~ 1)2r 2+ . . . .  (49) 

Unfortunately the series is usable only in a very small 
range about R o = O. 

The most interesting question is whether the true 
probability of small positive or small measured-as- 

negative intensities is greater or less than that given by 
a normal distribution having the same mean and 
variance. In general both the true and the normal 
values of p(0) are messy, but they simplify considerably 
for m t = m 2, = m, say. Using Stirling's approximation 
for the factorials one obtains, with q now T/B ,  

p(0)(true) _ - - m  ( m _ ~ ) ~ / 2 1 2 ( l + q 2 ) ]  1/2 

p(0) (normal) m -- 1 q + 1 

x e x p [  (q-qf+~ ]1)21 

x exp - m  2(q 2 + 1) 

+ 21oge[½(q+ 1 ) ] - l o g e q } ) ,  (50) 

where the terms in q have been arranged so that they 
reduce to unity for q = 1. The initial term in m differs 
from unity to a negligible extent, except perhaps in 
Killean's (1967) application. The behaviour of the ratio 
thus depends on the value of the coefficient of m in the 
exponential. This has the value zero for q - - 1 ,  and 
seems to be negative for all values of q greater than 
unity, approaching ½-loge(q/4)  for q large. The true 
probability is thus less than the probability given by the 
normal approximation. For very large values of IRol 
the probability given by the exact expression (47) 
becomes greater than that given by the normal approxi- 
mation, but in this region both probabilities are too 
small to be of practical interest. 

5. The central limit theorem 

The above discussions have shown that the probability 
of small positive and small measured-as-negative 
intensities differs from that to be expected from the 
normal approximation to the distribution functions. 
One may therefore have an uneasy feeling that there 
must be errors in the calculations, for does not the 
central limit theorem prove that for sufficiently large 
values of some explicit or implicit parameter n (in the 
present context the number of counts) all distributions 
tend to normality? This impression is certainly given by 
many textbooks, but the situation is far from simple. In 
the strict sense of the term, the central limit theorem 
applies to the distribution of the sum of n random 
variables, and is clearly irrelevant to the present 
problem: the distribution of the difference of precisely 
two random variables, each having a known, non- 
normal, distribution. However, there is a looser sense: 
the approach to normality of a distribution that can be 
represented by a Gram-Charlier A (Cram~r, 1945, pp. 
221-227) or an Edgeworth (Cram6r, 1945, pp. 
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227-231) series. In the Edgeworth form the repre- 
sentation is 

f ( x )  = ~ ( x ) l n  o + YlH3(x)/3! + 72H,(x)/4! 

+ lOT~H6(x)/6! + .. . / ,  (51) 

where x is the standardized variable (actual variable 
minus the mean, divided by the standard deviation), 71 
and 72 are the coefficients of skewness and excess 
(kurtosis) (Cram~r, 1945, p. 184), ~0(x) is the normal 
distribution, and H k is the Hermite polynomial of 
degree k (Cram6r, 1945, p. 133; He k in the notation of 
Abramowitz & Stegun, 1964); H 0 is in fact unity. 
Asymptotic normality follows from the observation 
that y~ is of the order of F/-1/2 and 72 of the order of n -1 
(Cram~r, 1945, pp. 228-229), and further terms of the 
series decrease as higher inverse powers of n. Thus , for  
f ixed x, functions that can be represented in the form 
(51) approach the normal distribution ~0(x) as n is 
increased. The present problem is, however, rather 
different, and is in fact twofold: 

(i) is (51) a valid representation of the distribution 
sought, and, if so, 

(ii) for  f ixed n, how does f ( x )  behave as Ix l 
increases? 

The second question is readily answered: H k has x k as 
its leading term, so that for fixed n the 'correction' 
terms in (51) increase without limit as I xl increases, 
and ultimately dominate the expression for f ( x ) .  
Unless f ( x )  happens to be normal to begin with, the 
representation (50) is far from normal for I xl large 
(more than a few times the cube root of y~-i or the 
fourth root of ~ ~). 

The first question is more difficult, and turns on the 
meaning of 'valid'. Cram6r (1945, p. 222) postulates 
the existence of moments of all orders, a condition 
fulfilled for fixed-time counting but not for fixed-count 
timing. It seems risky, therefore, to base any arguments 
on (51) for fixed-count timing. Secondly, for (51) to 
converge to f ( x )  the integral 

+co 
f e xp (~xE) f ( x )dx  (52) 

--(X3 

must exist (Cram6r, 1945, p. 223). This integral is 
infinite if the asymptotic form (30) is correct for 
fixed-time counting, so that even in the more favourable 
case (51) does not converge. The first few terms will 
thus be a good approximation to the true distribution 
for I xl small, but the approximation will deteriorate 
rapidly as I xl increases. All in all, therefore, appre- 
ciable deviations from normality in intensity distribu- 
tions need not be an occasion for surprise. 

I am indebted to Professor H. E. Daniels, Dr S. 
French and a referee for helpful criticism, and to Dr 
French, Dr P. F. Price and Dr K. Wilson for advance 
copies of their papers. 
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